DESCRIPTION:

The MP54C/MP55C series of power modules are low noise (no EMI), economical linear DC:DC converters with an integral connector conforming to Intel Corporation's Voltage Regulator Module specification for the Pentium ${ }^{\circledR}$ Processor.
Outstanding features include internal current limiting and thermal shutdown, providing full device protection against load faults and thermal overstress. The MP55C is designed to power split voltage plane microprocessors requiring $3.3 \mathrm{~V} \mathrm{~V}_{10}$ and $2 . \mathrm{xV} \mathrm{V}_{\text {core. }}$. The V_{10} is always supplied directly from a 3.3 V input; either the main system power supply or a low dropout regulator on the motherboard. The CPU core can be supplied either from the 3.3 V main supply to reduce heat dissipation (MP55C-3.3) or the 5 V main power supply (MP55C-5). The MP55C-3.3 still requires a few mA of 5 V power for control circuitry. The MP55C-3.3 will not be available for CPU core voltages higher than 2.8 V . Please contact Semtech for availability.

APPLICATIONS:

- Pentium ${ }^{\circledR}$ Processor P55C, Cyrix 6×86 and AMD5 ${ }_{k} 86$ power supplies

FEATURES:

- Integral VRM header connector
- Input voltage $5 \mathrm{~V} \pm 5 \%$
- $\quad 2.8 \pm 0.1 \mathrm{~V}$ output for CPU core power
- 3.3 V passes through the I/O power plane
- Maximum output current 6A
- Input power voltage:
$5 \mathrm{~V} \pm 5 \%$ for MP55C-5 or 3.3V for MP55C-3.3
- Low noise, no EMI

ORDERING INFORMATION:

DEVICE	Input (V)	Output (V)
MP55C-5-2.8	5.0	2.8
MP55C-5-2.5	5.0	2.5
MP55C-3.3-2.8	3.3	2.8
MP55C-3.3-2.7	3.3	2.7
MP55C-3.3-2.5	3.3	2.5

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Output Voltage ${ }^{(1)}$ 2.8V version	V_{0}	2.7	2.8	3.0	V
2.7V version		2.6	2.7	2.8	
2.5 V version		2.4	2.5	2.6	
Output Current	I_{0}			6.0	A
Line Regulation ${ }^{(1)}$	REG ${ }_{\text {(LINE) }}$		0.015	0.2	\%
Load Regulation ${ }^{(1)}$	REG ${ }_{(\text {LOAD) }}$		0.1	0.4	\%
Dropout voltage $\begin{array}{r}\text { (MP55C-5) } \\ \text { (MP55C-3.3) }\end{array}$	V_{D}		$\begin{gathered} 1.2 \\ 0.40 \end{gathered}$	1.3	V
Current Surge Limit	I_{S}		7.5		A
Quiescent Current	I_{Q}		12	16	mA
Temperature Coefficient	T_{C}		0.005		\%/ ${ }^{\circ} \mathrm{C}$
Temperature Stability	$\mathrm{T}_{\text {S }}$		0.5		\%
RMS Output Noise ${ }^{(2)}$	V_{N}		0.003		\% $\mathrm{V}_{\text {O }}$
Ripple Rejection Ratio	$\mathrm{R}_{\text {A }}$		72		dB
Linear Airflow Requirements (ambient temperature $55^{\circ} \mathrm{C}$)		$\begin{aligned} & 0.5 \\ & 100 \end{aligned}$			m / s $\mathrm{ft} / \mathrm{min}$

NOTES:

(1) Low duty cycle pulse testing with Kelvin connections required.
(2) Bandwidth of 10 Hz to 10 kHz .

October 27, 1997

INPUT AND OUTPUT CONNECTIONS			
Pin No.	Row \mathbf{A}	Row \mathbf{B}	Pin No.
1	$\mathrm{~V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	1
2	$\mathrm{~V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	2
3	ND	$\mathrm{V}_{\text {IO }}$	3
4	$\mathrm{~V}_{\text {IO }}$	$\mathrm{V}_{\text {IO }}$	4
5	+3.3 V	+3.3 V	5
6	+3.3 V	+3.3 V	6
7	$\mathrm{~V}_{\text {CORE }}$	$\mathrm{V}_{\text {CORE }}$	7
8	$\mathrm{~V}_{\text {CORE }}$	$\mathrm{V}_{\text {CORE }}$	8
9	$\mathrm{~V}_{\text {SS }}$	$\mathrm{V}_{\text {CORE }}$	9
10	$\mathrm{~V}_{\text {CORE }}$	$\mathrm{V}_{\text {CORE }}$	10
11	PWR GOOD	RES	11
12	SENSE	DISABLE	12
13	$\mathrm{~V}_{\text {SS }}$	$\mathrm{V}_{\text {SS }}$	13
14	+5.0 V	+5.0 V	14
15	+5.0 V	+5.0 V	15

End view of VRM connector (viewed from motherboard side)

VOLTAGE REGULATOR MODULE CONNECTOR PIN REFERENCE

Pin Name	I/O	Function	Notes	
+3.3 V	Input	+3.3 V Supply	Connected directly to $\mathrm{V}_{\text {IO. }}$ MP55C-3.3: Main Power Input	
+5.0 V	Input	+5.0 V Supply	MP55C-5: Main power input MP55C-3.3: Bias for regulator control	
$\mathrm{V}_{\text {CORE }}$	Output	Voltage Regulator Module Output	2.8 V output for CPU core	
$\mathrm{V}_{\text {IO }}$	Output	CPU I/O power connection.	Tied to 3.3V input ($\mathrm{V}_{\text {CC3 }}$)	
$\mathrm{V}_{\text {SS }}$	Input	Ground Reference	Ground	
DISABLE	Input	When driven high, this input will disable the Voltage Regulator Module output and the output of the module will float.	Not connected	
PWR GOOD	Output	Power Good is driven low when the VRM output is not within valid levels.	Not connected	
SENSE	Input	Sense is provided for the regulator to correct for voltage drops across the connector and motherboard powerplane.	MP55C-5: Not connected MP55C-3.3: Connected	
RES	Input	Formerly UPVRM\#	Tied to output.	
ND				

October 27, 1997

MECHANICAL DIMENSIONS

Dimension	Inches	Millimeters
A	2.575	65.4
B	1.8	45.7
C	0.8	20.3
D	1.6	40.6
E	0.24	6.1
$\mathrm{~B}_{2}$	0.42	10.7
$\mathrm{~B}_{3}$	0.15	3.8
$\mathrm{~B}_{5}$	0.5	12.7

Component size and location for illustration only

INPUT VOLTAGE CONFIGURATIONS

MP55C-3.3

Uses 3.3 V input (from main system power supply) for conversion to CPU core voltage. Lowest dropout at 4A is 0.35 V ; VCORE higher than 2.8 V must use MP55C-5.

MP55C-5
Uses 5 V for main power and 3.3 V for V_{10}. 3.3 V can be supplied by a low dropout regulator such as an EZ1085. 5 V is supplied by main system power supply.

A few milliamps of power at 5 V is necessary for control circuit bias.

